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ABSTRACT

This report describes the implementation of the Chaboche type Nonlinear Kinematic

Hardening Model developed for the PNGV SPP (Partnership for the Next Generation
Vehicle, Spring-back Predictability Project). The material model includes a nonlinear
kinematic and isotropic hardening law, transverse anisotropy, strain range memorization
for cyclic hardening/softening and viscoplasticity. This report is a companion to the
report: “A Return Mapping Algorithm for Cyclic Viscoplastic Constitutive Models”
which concentrates on the theoretical aspects of the model.  This report summarizes the
necessary parameters for the model, briefly discusses their interpretation and shows some
numerical simulations.  The report also specifies the data structure requirements for
linking the material model software by explicitly referencing the source code delivered
to the SPP collaborators.



Introduction

In order to more accurately represent the springback behavior in many sheet
forming processes, it has appeared necessary to incorporate some form of nonlinear

kinematic hardening to capture phenomena such as the Bauschinger effect. Many uniaxial
experiments on the sheet metals commonly used in the automobile industry also support
this notion. In this report, a material model developed for the PNGV SPP project that
incorporates the following phenomena is described:

1. nonlinear kinematic hardening
2. nonlinear isotropic hardening
3. transversely anisotropic elastic/plasticity
4. power law viscoplasticity
5. strain range memorization

This report describes the necessary parameters to be input for the model and presents
the results of the NUMISHEET 93 U-Channel with mild steel using a 2.45 K and 19.6 K
binder force. The material model was delivered to the SPP group as a FORTRAN code
module in source code form so that the collaborators would have an opportunity to
modify it at there disposal. The necessary data structures for the material model
implementation are also  specified in this report.

The document “A Return Mapping Algorithm for Cyclic Viscoplastic Constitutive
Models”  [1] was also submitted as a report to the PNGV SPP group and is currently in
press with the journal Computer Methods in  Applied Mechanics. The aforementioned
document will hereon be referred to as the theory manual. Whereas the presentation
herein is a functional description, the theory manual describes the theoretical nature of

the material model  such as the intrinsic positive dissipation, the implicit algorithm for the
return mapping and the development of a fully linearized consistent tangent.

This report presents the synopsis for the material model theory in Section 1. In
Section 2, some results are compared to the work by Zhao [2] for verification of the
LLNL model and his work. In Section 3, the results for the Numisheet 93 U-Channel for
fully isotropic and fully kinematic idealizations are compared. In the Appendix, the
hardcopy of the material model is included for reference. A detailed description of the
necessary data structures for implementation is also included at the beginning of the
hardcopy.



1. Material Model Description

Yield Surface

This material model can represent the cyclic elasto-viscoplastic behavior of many
metals. The model has return mapping algorithms for doing 3D plasticity for brick

elements, 2D plane stress plasticity for shells and 1D uniaxial plasticity for beams. The
shell model also includes the transversely isotropic behavior often encountered in rolled
sheets. The different plasticity theories are manifested in the equation for the yield
surface in the following fashion

f y= −1
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where the reduced stress is given η σ= − X , X is the backstress, σ y  is the yield stress

and the projection matrix Poperates on the reduced stress so that the proper stress
invariant for 1D,2D and 3D results. The following forms for P  are given
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for 2D plane stress. (2)

Addition forms for P  are given in the theory manual. For example, with 2D plane stress,
σ τ  τ33 23 31, and  are zero. This would give the usual (matrix) form for the 2D elasticity

tensor
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Expanding (1) for plane stress using (2)2 and assuming there is no backstress ( )X = 0

yields the usual J2 form for deviatoric plasticity
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The plastic strain is based on the associative flow law and is therefore found from (1) as
such

˙ ˙ ˙ε
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The utility of using (1)-(5) for 2D plane stress is that the only unknown strains in the
problem are the in plane strainsε ε  γ11 22 12, and . In the past, 3D models where used for 2D

plane stress plasticity and all 6 strains had to be computed with the  constraint
σ τ  τ33 23 31, and  = 0  explicitly enforced.

Transverse Isotropy

The anisotropic model extension was not included in the theory manual and will
be briefly discussed. For orthotropic plasticity, Hill’s criterion reads
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The yield stresses are given by σ σ  σy y y y y y1 2 1 12 23 31, , , ,τ τ τand  and are related to the

constants F-N as such
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Defining the parameter K y y= σ σ/ 3 and using it with (7) and (8) in (6) with some algebra

produces the following yield function for transverse isotropy
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Now consider the plane stress case whereσ τ  τ33 23 31, and  = 0 and define the parameter R

to be the ratio of strains

R =
˙
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for a uniaxial tensile deformation in the 1 direction. Using the associative flow rule (5)
and taking the appropriate derivatives in (9), the ratio (10) with σ22 = 0 can be shown to

be constant and given by

R
K

= −2
12 (11)

Solving for K in terms of R in (10) and substituting into (9) provides the yield function
for transverse anisotropy
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Equation (12) can be rewritten in the form (1) where P is given by
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Using (13) and the reduced stress η σ= − X in(12) provides a kinematic hardening model

for transverse isotropy.

Hardening

The constitutive model is based on multi-component  forms of kinematic and isotropic

hardening variables in conjunction with the yield criterion (1) for rate-independent
plasticity. The nonlinear evolution of each of the multi-component kinematic hardening
variables is based on Armstrong-Frederick type rule and is given by

˙ ( ) ˙X Xi i i i i ,...,numkin= − ∀ =2
3

α σ λi yC Dη 1,2 (14)

where XI  denotes an independent kinematic hardening variable, Ci  and Di  denote the
numkin material constants, α i = 1 without strain range memorization and λ̇  denotes the

consistency parameter1. A saturation type hardening rule is used to describe the nonlinear
evolution of each of the isotropic hardening variables. Mathematically, the evolution of
an independent isotropic hardening variable Ri  is given by

                                                  
1 Note that the theory manual uses a different notational form for the kinematic hardening
˙ ( ) ˙X Xi xi i= −2

3
D Qi η κ λ .
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where bi and Qi  denote isotropic material constants. For rate-independent plasticity, the
elastic domain is defined by the yield criterion (1) as
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The center  X  and the change in the size of elastic domain r are defined in terms of
independent kinematic and isotropic hardening variables as
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For rate-independent plasticity, the plastic multiplier λ̇  is obtained through the
consistency condition. On the other hand, in the case of viscoplasticity, the plastic
multiplier may be obtained as

λ̇ = f

K

n

(18)

where K  and n  denote the viscosity coefficient and exponent respectively. With
viscoplasticity, the inequality in (16) is not be enforced and (18) is used in  (5), (14) and

(15).
The concept of memory surface is used to describe the strain range dependent

material memory effects that are induced by the prior strain histories. This is usually
manifested as cyclic hardening and sometimes cyclic softening. The strain range
dependent memory effects on isotropic and kinematic hardening evolve the parameters α i

and Qi in equations (14) and (15) respectively as such
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The parameter q is related to the maximum plastic strain achieved during loading. The
reader is referred to the theory manual for a detailed description of the strain range
memorization.

Input Parameters

The following is a summary of the input for the material model. The prop(48) array (see
source code description in the last section) stores these parameters sequentially in the
following order:

Young’s modulus, E prop(1)
Poisson’s ratio, ν prop(2)

Yield  stress, σyo prop(3)

Viscosity coefficient,  K prop(4)
Viscosity exponent,  n prop(5)

Number of kinematic hardening rules,  (numkin ≥1) prop(6)
Number of isotropic hardening variables,  (numiso ≥1) prop(7)

Memory effects variable,  (memeff) prop(8)

EQ. 0:  do not include
EQ. 1:  include

C1, D1, C2, D2, …. Cnumkin, Dnumkin prop(8)-prop( n1), n1 = 8+2*numkin
b1, Q1, b2, Q2, …. bnumiso, Qnumiso prop(n1+1)-prop(n2), n2 = n1+2*numiso

Q01, QM1, ω1, Q02, QM2, ω2, …. Q0numiso, QMnumiso, ωnumiso prop(n2+1)-prop(n3), n3 = n2+2*numiso

D01, DM1, δ1, D02, DM2, δ2, …. D0numkin, DMnumkin, δnumkin prop(n3+1)-prop(n4), n4 = n3+2*numkin

Note, if memeff = 0 then all input past prop(8) is ignored. If memeff = 1, then input values
for Q1- Qnumiso in prop(n1+1)-prop(n2) are ignored and the value for Qi is taken from (20).
Note, a maximum of 48 parameters can be input to the material model since the
dimension for the prop array is hard coded.

The anisotropic hardening parameter R is not included in the prop(48) array but is instead
passed through the argument list (see source code section).

Unixaxial Loading

The first order differential equations given by (14) and (15) can be easily solved
for constant strain rate loading. The solution of which can be employed when curve
fitting experimental data.

Example

In this example, a solution for the saturation stress is found for uniaxial
monotonic loading in the 1 direction for a material with one kinematic hardening law.
The first thing to note is that the backstress X in (14) is not deviatoric.  Therefore, using



X = {X1,X2,X3}
T, examination of (14) will show that X2 = X3 = 0. Furthermore, η = {σ1

– X1,0,0}T. The, plastic strain in the 1 direction is found from (5) and (2) or (13)
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Using (21) in (14), the backstress can then be found
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The saturation stress is then found from (23) to be
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This can be generalized for multiple backstress and isotropic hardening components to
be
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The material model can replicate linear isotropic and kinematic hardening as follows. Set
the following (numkin  = 1 and numiso  = 1) and

C E D

b Q E b Qp

1 1 1

1 1 1 1

1 0= −( ) =

( ) = → ∞ → ∞

β

β ,
(26)

where β is the mixed hardening parameter (ratio of isotropic to kinematic hardening) and

Ep  is the plastic modulus. For the linear isotropic hardening, b1 is set sufficiently big and
Q1 is set sufficiently small.

Curve Fitting

Curve fitting experimental data using solutions of the form (23) is a non-linear
least squares problem. In lieu of that, one can choose a priori a set of Di and then use a
linear least squares fitting process to choose Ci. The first guess for Di can be made by
recognizing from (23) that a given i component quantity is nearly saturated at εi = 1/Di.

2. Cyclic Uniaxial Loading



An example  of cyclic loading and saturation is given. The material parameters
are taken from Zhao [2] for SPCEN mild steel.

Isotropic hardening Q 37.7 MPa b 67.8
Kinematic hardening C 23.7 GPa D 416

Anisotropic ratio R 1.53
Yield stress σyo 108 Mpa

Young’s Modulus E 153 GPa

Figure 1 shows the stress strain using the material model for the uniaxial cyclic loading.
These results match Zhao [2]. Using (25) and the above parameters, saturation should be

achieved at the stress

σ saturation = 108 + 23,700/416 + 37.7 = 202.67 (27)

and can be verified in Figure 1.

3. 2D Draw Bending
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Figure 1 Stress verses strain for SPCEN mild steel.



The following example assess the effects of kinematic hardening on the
springback of a stamped sheet metal part. The 93 Numisheet 2D Draw Bending problem
using mild steel is simulated for two case:

1. Isotropic hardening exclusively
2. Kinematic hardening exclusively

The forming setup is shown in Figure 2 (all dimensions are in mm). The sheet is 0.78 mm
thick and two different binder forces are examined: F=19.6 kN and F=2.45 kN. The
parameters for both the isotropic and kinematic hardening were chosen to fit the
experimentally derived power law curve (28) for mild steel using the heuristic method
described above.

σ ε= +565 32 0 00717 0 2589. ( . ) . (28)

The curve fit is shown in Figure 3. The material parameters are shown in Table 1 and the
uniaxial loading and unloading curves are shown in Figure 4. A portion of the Baushinger
effect can be seen upon unloading for the kinematic hardening case in Figure 4. In Figure

5., the results are shown before and after the tooling is removed for the 2kN binder force
case. The amount of springback is measured by the deflection of the flange angle (upper
right hand portion of the sheet) from horizontal. The simulated flange angles are shown
in Table 2 and are compared with the experimental average results. As expected, the
kinematic hardening provides more springback. In the case of the 19.6 kN binder force,
the kinematic hardening gave too much springback.
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350

punchbinder

F/2 F/2

binder

52

5555

Figure 2. Numisheet 93 2D Draw Bending

sheet



Table 1.

E = 206 Gpa,  ν = 0.3, σy = 100.462, Friction coefficient = 0.144

Isotropic Hardening Case
b1,Q1 3.3333333 272.936
b2,Q2 20 29.0895
b3,Q13 50 57.2771
b4,Q4 1000        57

Kinematic Hardening Case
D1,C1 3.3333333 909.78667
D2,C2 20 581.79
D3,C3 50 2863.85

      D4,C4 1000        57000
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Figure 3. Curve fit using parameters in Table 1.



binder force Isotropic hardening kinematic hardening experimental avg.

2.45 kN 17.20 17.57 17.1

19.6 kN 12.10 16.30 12.6
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Figure 4. Loading and unload for isotropic and
kinematic material models.

Table 2. Flange angles measured in degrees after springback for different cases.
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Figure 5. Sheet before and after tooling is removed.  The springback is shown for the 2
kN kinematic hardening case.


	DISCLAIMER



